Descriptive Set Theory HW 1

Thomas Dean

Problem 1. Let (X, 7) be a second-countable topological space.

1.
2.

4.

Show that X has at most continuum many open subsets.

Prove that any strictly monotone sequence (Uy)a<~, 0f open subsets of
X has countable length.

Show that every monotone sequence (Uy,)a<w, Of Opens sets eventually
stabilizes.

Conclude that the above holds for closed sets as well.

Solution.

1.

Fix a countable basis (B),)n<. for X. Notice that the open subsets of X
are precisely unions of elements from this countable basis. With this in
mind, define f : 7 — p(w) by sending U € 7 to the set {n: B, C U}.
Notice that f(U) is maximal such that U = |, ¢ s Bn- It's straightfor-
ward to check that U C V iff f(U) C f(V), and so it follows that f is
injective, yielding the result. Because the map U — X — U is a bijection
between the open and closed sets, the result also holds for closed sets.

. Let f be the function defined before. It follows from above that U C V

iff f(U) C f(V). The key fact is that there cannot be an uncountable
strictly increasing or decreasing sequence of subsets of w, as w is count-
able. To see this, if we had for example that (Aa)a<w, Was a strictly
decreasing sequence of subsets of w, we could choose for each o < wy an
element n, € A, — Aa11, which defines an injection from w; into w.

So, using the observation above, any uncountable strictly monotone se-
quence (Uy)a<~ of open sets would correspond either to the uncountable
strictly increasing or decreasing sequence (f(Us,))a< Of subsets of w, con-
tradicting the above remark. The result for closed subsets of X follows
by taking complements.



3. Assume instead there was a monotone sequence (U,)a<w, Of opens sets
that never stabilized. Without loss of generality, assume that it were
increasing. Then for each o < wy, there would be a § > « such that
Uy € Ug. Then, the set {a < w;: (V8 < a) Us € U,} is an unbounded
(and hence uncountable) subset of w;. This induces an uncountable
strictly increasing sequence of open sets, contradicting (2). The result

for closed sets follows by taking complements.
4. Remarks were made above concerning this question.

*

Problem 2. Prove that any separable metric space has cardinality at most
continuum. Counterexample for general separable Hausdorff spaces?

Solution. Let (X, d) be such a metric space, and D C X witness separability.
Define a map f: X — RP by f(z)(a) = d(x,a). The point is that elements
of X are determined by their distances from elements in a dense subset. This
map is an injection, as if x # y, there’s an r > 0 such that d(x,y) > r. By
density, there’s an a € D such that d(z,a) < §. Triangle inequality implies
that d(y,a) > %, yielding that f(z)(a) # f(y)(a). Since D is countable, R”
has cardinality continuum, and the result follows.

For the counterexample, it is known that the product of continuum many
separable Hausdorff spaces is separable, and so 2% is a separable Hausdorff
space. *

Problem 3. Let (X, d) be a metric space.

1. Show that X is complete iff every decreasing sequence of nonempty closed
sets (B )n<w with diam(B,,) — 0 has nonempty intersection (is a single-
ton).

2. Show that diam(B,) — 0 cannot be dropped.

Solution.

1. Let X be complete and (B,,)n<. a decreasing sequence of closed sets
with diam(B,,) — 0. Then consider the sequence (z;) by choosing x; €
B;. This sequence is Cauchy as given any € > 0, there’s some N such
that & > N implies diam(By) < . For any two n,m > N, since the
sequence is decreasing, x,,x, € By, implying that d(z,,z,) < . By
completeness; this sequence has a limit . Then, x € [ __ B, as each
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is closed and the sequence (z;) is eventually in any B,,. To see that this
intersection is a singleton, observe that if y € (1, _, By, then, for any
e >0, d(z,y) < € as diam(B,,) — 0. This implies that = = y.

Going in the other direction, fix a Cauchy sequence (z,) in X. Use
Cauchy-ness to inductively construct an strictly increasing sequence (Ny)
such that, for k > 0, d(zp, 2) < 2%+ when n,m > N,. Then let
By, = Blzy,,27%] be the closed ball of radius 27* around zy,. It’s clear
that diam(Bg) — 0.

To show this sequence is decreasing, fix m > k+ 1. If y € Blxy,,,27™],
then by construction, N,, > Ny, and so d(zy,,,zn,) < 2-(k+1) " Qince
2-m < 2=+ it follows

d(y, zn,) < d(y,zn,,) + d(zy,,, oy, ) < 27FHD 4 o= kHD — 9=k

yielding y € Blxy,,27%]. By assumption, there’s a unique z € MNh<w Bn-
It’s easy to show (x,) — z. It follows that X is complete by definition.

2. To see that diam(B,,) — 0 cannot be dropped, consider the Polish space
w with the discrete metric. Every set is closed, and so [n,w),«, forms
a decreasing sequence of closed sets with empty intersection. With the
discrete metric, each such set has diameter 1.

*

Problem 4. Show G sets are closed under finite unions. Equivalently, F,
sets are under finite intersections.

Solution. Let A=(),_, U;and B =(),_, Vi be G; sets. The F, case follows
by taking complements. The key fact is that for sets X and {Y;}ics, we have
XUN,Y,=N;Y;UX). In particular,

AUB = ﬂ(VnUA): m(m(VnUUm)): ﬂ (VnUUm)'

n<w n<w m<w n,mew

The final intersection is countable and V,, U U,, is open for any n, m < w, so
AU B is Gs by definition. *



Problem 5. Show the following:
1. Baire space is homeomorphic to a G subset of the Cantor space.

2. The irrationals is homeomorphic to the Baire space.

Solution.

1. It’s enough show to that Baire space is homeomorphic to a subspace of
Cantor space, as a Polish subspace of a Polish space is GG5. Define the
map ¢: w’ — 2 by ¢(x) = 071011021 ..., where 0% is 0 repeated
x;-many times. Observe that ¢ injects w® onto the set of all binary
sequences with 1 appearing infinitely often. Now, ¢ is a homeomorphism
as for any x € w¥, the first n digits of p(x) are determined by (at most)
the first n digits of x. Similarly, ¢! is continuous as the first n digits of
x are determined by the first >, x; +n digits of p(x).

2. Let D denote the space w® where we replace our first copy of w with
Z endowed with the discrete topology, and each subsequent factor of w
doesn’t contain 0. D is homeomorphic to w*“, so it’s enough to show
that the irrationals is homeomorphic to . Following the hint, given an
irrational number x, we can write it uniquely as follows:

1
ZL’:Q?()—F (1)

T+

T3+ ———
ZE4+"-

where x is an integer and x; < w for each ¢ > 0. This is apparently de-
noted [zo; 1,25 ...]. Further, each such continued fraction like the RHS
of (1) is an irrational number. Define ¢: D — [ by = +— [x¢; 21, 22.. ]
Then ¢ is a homeomorphism. Indeed, ¢ is continuous as given an irra-
tional p(z) = [xo; 1,22 ...] and any e-ball B around ¢(z), membership
in B will depend on only the first n many digits of = (for some sufficiently
large n). Going in the other direction, given z € D and the first n digits
of z, we can find an e-ball around [z¢; 21,25 ...] such that any y € D
with ¢(y) inside this ball will agree with = on the first n digits.



Problem 6. Let ' C A<N be a tree and suppose it is finitely branching. Prove
that [T] is compact.

Solution. Using the notation from Anush’s notes, let T'(0) = {z € A: 07z €
T} for o a finite sequence from A. Without loss of generality, assume that 7" is
pruned and [T is nonempty. Now, let (z,,),<. be a sequence of elements of [T7].
It’s enough to find a convergence subsequence. Construct such a subsequence
(%, )i<w and sequence (a;);<, by induction such that at each stage k, the set
(Tn)n<w NN (2, | k) is infinite, and that any two elements in this subsequence
chosen after stage k will have (ao, ..., ax) as its first k£ 4 1 digits.

We do this in the following way: given xz,,, T'(z,, | k) is finite as our tree
T is finitely branching. By the induction hypothesis there’s an a; € A such
that the basic open set N((x,, | k) ax) contains infinitely many elements
from (2,)n<w. Choose xy, ., to be such an element in N((zy, [ k) ax). In
particular, notice that x,,_, [ k = x,, [ k. This completes the inductive
definition.

Finally, define x € [T] by z(k) = a;. We claim that (z,,) — x. Indeed,
notice that for any length m, we have by construction that any sequence

element x,, chosen after stage m will extend (ao,...,a,_1), and therefore
agree with x on its first m digits. It follows that (z,,) — x as desired, and
therefore that [T is compact. *

Problem 7. Let S,T be trees on set A, B. Show that for any continuous
function f: [S] — [T, there’s a monotone map ¢: S — T such that f = ¢*.

Solution. In what follows let Ny be shorthand for N, N [S] when s is a finite
sequence from S (and similarly for N;). Without loss of generality, assume
that both [S] and [T] are nonempty. Following the hint, define ¢(s) to be the
longest t € T such that |t| < |s| and N; O f(Ns). The only hiccup may be
if Ny = @; i.e., nothing in [S] extends s. In this case we may set p(s) to be
o(s"), where s’ C s is the largest such that Ny isn’t empty. Such a s’ always
exists. We need to check that ¢ is well defined. To see this, observe that if
lto] < |t1], they satisfy f(Ng) C Ny, and f(N;) € Ny, and N is nonempty,
then tg C t4.

To see what ¢ is doing, given x O s, we compute all the corresponding f(x),
and set ¢(s) as the largest initial segment (of length at most |s|) shared by
all f(x). With this in mind, it’s not difficult to see that ¢(x) is monotone.
Indeed, if s C ¢, then when we compute f(z) for extensions x of &', they
all must at least extend ¢(s), as each x extends s as well. Since @(s') is the
longest such element of T of length at most |s'|, it follows that ¢(s) C ¢(s').



Finally, we check that f = ¢*. Recall, *(z) = |, ¢(z|n), where dom(¢*)
is all € [S] such that lim, |p(z|n)| = co. We first show that [S] = dom(y).
Given z € [S] and k < w, since f is continuous, we can find some m > k such
that f(Ngm) € Ny@k. We then have by definition that & = |f(z) | k| <
|o(z|m)|. But, then lim,, |¢(x|n)| = oo, as ¢ is monotone and k was arbitrary.

The result follows after checking that f(x) = ¢*(z). To see this, given k,
we perform the argument in the above paragraph to find an m > k such
that f(Nyjm) € Ny Now, by definition, f(Ngm) € Ne@m)- Like above,
we know that |f(x) [ k| < |p(z|m)|, and so the observation from the first
paragraph to check that ¢ was well-defined implies that in fact f(z)|k C
o(xlm). As f(x) and p*(z) are both sequences, it finally follows that f(z) =

U, f(2)ln = U, e(xlm) = ¢*(x).
Problem 8. Let (X, d) be a metric space. Show the following are equivalent:

*

1. X is compact.
2. Every sequence in X has a convergent subsequence.
3. X is complete and totally bounded.

Solution. We proceed by following Anush’s outline.

(1) = (2): Given a sequence (z,), let K,, be the closure of {z,}m>,. The
collection of all such K, have the finite intersection property, as they’re the
closure of the tails of the given sequence. Since X is compact, (), Ky, is
nonempty. Fix z € [, K. We now construct a subsequence (z,,); that
converges to x: First, set z,, = xo. Now, given z,,, we know by definition
of closure that B(x,1/(n; + 1)) intersects K,,+1. So, fix m > n; such that
Ty € B(x,1/(n; +1)). Set ,,,, = x,. By construction, n; < n;; for all
i, and d(z,z,,,,) < mlﬂ — 0 as i — 0. It’s straightforward to check that

(2) = (3): If X isn’t complete, then there’s a Cauchy sequence without a
convergent subsequence. But this implies that the Cauchy sequence cannot
converge. For total boundedness, assume instead that there’s an € > 0 such
that X cannot be covered by finitely many ball of radius e. We construct
a sequence (T,)n<, Without a convergent subsequence. Since X isn’t totally
bounded, it must be non empty, so fix zo € X. Given (z;);<,, we have by
hypothesis that | J,_,, B(z;,¢) # X. So, fix ;11 ¢ U,.,, B(xi,€). By construc-
tion, we have that d(x;,z;) > ¢ for all 7, j < w, so certainly no subsequence of
(n)n<w could converge.

(3) = (2): Fix a sequence (2,)n<w. If 2; = x; occurs for infinitely many
pairs i, j, then we're done. Otherwise, by thinning to a subsequence we may
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assume that (x,),<, is injective. Next, given a € X and ¢ > 0, let’s write
Sae = {x;: x; € B(a,e)}. We construct a subsequence (z,,);<, and sequence
(@;)i<w as follows:

For the base case, first observe there’s a 2°-net F'. By the pigeonhole principle
and since our sequence is injective, there’s an ag € F such that S, ; is infinite.
Choose z,, € Sy, 1. Next, given z,, and a; for i < k, we know that there’s
a finite 2-(*+_net F. By the pigeonhole principle and induction, there’s an
axy1 € F such that (,.; Sa,2-i M S, 2+ is infinite. In particular, we may
fix ny1 > ny such that @, € (N Sai2-i N Say 241

By construction it follows that (z,,)i<. is Cauchy (and thus converges by
the previous paragraph). To see this, for any & > 0, fix k such that 27! < e.
Then, for all 4,7 > k+1, z,,,xn; € Sy, 2-#-1 by construction. It then follows
that

d(2p,, Tn;) < d(2p,, apg1) + d(Tn;, ar1) < 9 k=l o7kl — ok

and we win.

(2) and (3) = (1): Doing what Anush told me to do, I looked up Thm 0.25
in Folland. The main idea is that, given an open subcover {U,}, we find an
€ > 0 such that every e-ball B is contained in a U,,. For then we win because
then we could cover X by a finite number of e-balls B;, implying {U,,,}i is a
finite subcover. *



