Descriptive Set Theory HW 1

Thomas Dean

Problem 1. Let (X, τ) be a second-countable topological space.

1. Show that X has at most continuum many open subsets.
2. Prove that any strictly monotone sequence $\left(U_{\alpha}\right)_{\alpha<\gamma}$ of open subsets of X has countable length.
3. Show that every monotone sequence $\left(U_{\alpha}\right)_{\alpha<\omega_{1}}$ of opens sets eventually stabilizes.
4. Conclude that the above holds for closed sets as well.

Solution.

1. Fix a countable basis $\left(B_{n}\right)_{n<\omega}$ for X. Notice that the open subsets of X are precisely unions of elements from this countable basis. With this in mind, define $f: \tau \rightarrow \wp(\omega)$ by sending $U \in \tau$ to the set $\left\{n: B_{n} \subseteq U\right\}$. Notice that $f(U)$ is maximal such that $U=\bigcup_{n \in f(U)} B_{n}$. It's straightforward to check that $U \subseteq V$ iff $f(U) \subseteq f(V)$, and so it follows that f is injective, yielding the result. Because the map $U \mapsto X-U$ is a bijection between the open and closed sets, the result also holds for closed sets.
2. Let f be the function defined before. It follows from above that $U \subsetneq V$ iff $f(U) \subsetneq f(V)$. The key fact is that there cannot be an uncountable strictly increasing or decreasing sequence of subsets of ω, as ω is countable. To see this, if we had for example that $\left(A_{\alpha}\right)_{\alpha<\omega_{1}}$ was a strictly decreasing sequence of subsets of ω, we could choose for each $\alpha<\omega_{1}$ an element $n_{\alpha} \in A_{\alpha}-A_{\alpha+1}$, which defines an injection from ω_{1} into ω.
So, using the observation above, any uncountable strictly monotone sequence $\left(U_{\alpha}\right)_{\alpha<\gamma}$ of open sets would correspond either to the uncountable strictly increasing or decreasing sequence $\left(f\left(U_{\alpha}\right)\right)_{\alpha<\gamma}$ of subsets of ω, contradicting the above remark. The result for closed subsets of X follows by taking complements.
3. Assume instead there was a monotone sequence $\left(U_{\alpha}\right)_{\alpha<\omega_{1}}$ of opens sets that never stabilized. Without loss of generality, assume that it were increasing. Then for each $\alpha<\omega_{1}$, there would be a $\beta>\alpha$ such that $U_{\alpha} \subsetneq U_{\beta}$. Then, the set $\left\{\alpha<\omega_{1}:(\forall \beta<\alpha) U_{\beta} \subsetneq U_{\alpha}\right\}$ is an unbounded (and hence uncountable) subset of ω_{1}. This induces an uncountable strictly increasing sequence of open sets, contradicting (2). The result for closed sets follows by taking complements.
4. Remarks were made above concerning this question.

Problem 2. Prove that any separable metric space has cardinality at most continuum. Counterexample for general separable Hausdorff spaces?

Solution. Let (X, d) be such a metric space, and $D \subseteq X$ witness separability. Define a map $f: X \rightarrow \mathbb{R}^{D}$ by $f(x)(a)=d(x, a)$. The point is that elements of X are determined by their distances from elements in a dense subset. This map is an injection, as if $x \neq y$, there's an $r>0$ such that $d(x, y) \geq r$. By density, there's an $a \in D$ such that $d(x, a)<\frac{r}{2}$. Triangle inequality implies that $d(y, a) \geq \frac{r}{2}$, yielding that $f(x)(a) \neq f(y)(a)$. Since D is countable, \mathbb{R}^{D} has cardinality continuum, and the result follows.

For the counterexample, it is known that the product of continuum many separable Hausdorff spaces is separable, and so $2^{\mathbb{R}}$ is a separable Hausdorff space.

Problem 3. Let (X, d) be a metric space.

1. Show that X is complete iff every decreasing sequence of nonempty closed sets $\left(B_{n}\right)_{n<\omega}$ with $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$ has nonempty intersection (is a singleton).
2. Show that $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$ cannot be dropped.

Solution.

1. Let X be complete and $\left(B_{n}\right)_{n<\omega}$ a decreasing sequence of closed sets with $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$. Then consider the sequence $\left(x_{i}\right)$ by choosing $x_{i} \in$ B_{i}. This sequence is Cauchy as given any $\varepsilon>0$, there's some N such that $k \geq N$ implies $\operatorname{diam}\left(B_{k}\right)<\varepsilon$. For any two $n, m \geq N$, since the sequence is decreasing, $x_{n}, x_{m} \in B_{k}$, implying that $d\left(x_{n}, x_{m}\right)<\varepsilon$. By completeness, this sequence has a limit x. Then, $x \in \bigcap_{n<\omega} B_{n}$ as each
is closed and the sequence $\left(x_{i}\right)$ is eventually in any B_{n}. To see that this intersection is a singleton, observe that if $y \in \bigcap_{n<\omega} B_{n}$, then, for any $\varepsilon>0, d(x, y)<\varepsilon$ as $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$. This implies that $x=y$.
Going in the other direction, fix a Cauchy sequence $\left(x_{n}\right)$ in X. Use Cauchy-ness to inductively construct an strictly increasing sequence (N_{k}) such that, for $k>0, d\left(x_{n}, x_{m}\right)<2^{-(k+1)}$ when $n, m \geq N_{k}$. Then let $B_{k}=B\left[x_{N_{k}}, 2^{-k}\right]$ be the closed ball of radius 2^{-k} around $x_{N_{k}}$. It's clear that $\operatorname{diam}\left(B_{k}\right) \rightarrow 0$.
To show this sequence is decreasing, fix $m \geq k+1$. If $y \in B\left[x_{N_{m}}, 2^{-m}\right]$, then by construction, $N_{m}>N_{k}$, and so $d\left(x_{N_{m}}, x_{N_{k}}\right)<2^{-(k+1)}$. Since $2^{-m} \leq 2^{-(k+1)}$, it follows

$$
d\left(y, x_{N_{k}}\right) \leq d\left(y, x_{N_{m}}\right)+d\left(x_{N_{m}}, x_{N_{k}}\right)<2^{-(k+1)}+2^{-(k+1)}=2^{-k},
$$

yielding $y \in B\left[x_{N_{k}}, 2^{-k}\right]$. By assumption, there's a unique $x \in \bigcap_{n<\omega} B_{n}$. It's easy to show $\left(x_{n}\right) \rightarrow x$. It follows that X is complete by definition.
2. To see that $\operatorname{diam}\left(B_{n}\right) \rightarrow 0$ cannot be dropped, consider the Polish space ω with the discrete metric. Every set is closed, and so $[n, \omega)_{n<\omega}$ forms a decreasing sequence of closed sets with empty intersection. With the discrete metric, each such set has diameter 1 .

Problem 4. Show G_{δ} sets are closed under finite unions. Equivalently, F_{σ} sets are under finite intersections.

Solution. Let $A=\bigcap_{i<\omega} U_{i}$ and $B=\bigcap_{i<\omega} V_{i}$ be G_{δ} sets. The F_{σ} case follows by taking complements. The key fact is that for sets X and $\left\{Y_{i}\right\}_{i \in I}$, we have $X \cup \bigcap_{i} Y_{i}=\bigcap_{i}\left(Y_{i} \cup X\right)$. In particular,

$$
A \cup B=\bigcap_{n<\omega}\left(V_{n} \cup A\right)=\bigcap_{n<\omega}\left(\bigcap_{m<\omega}\left(V_{n} \cup U_{m}\right)\right)=\bigcap_{n, m \in \omega}\left(V_{n} \cup U_{m}\right) .
$$

The final intersection is countable and $V_{n} \cup U_{m}$ is open for any $n, m<\omega$, so $A \cup B$ is G_{δ} by definition.

Problem 5. Show the following:

1. Baire space is homeomorphic to a G_{δ} subset of the Cantor space.
2. The irrationals is homeomorphic to the Baire space.

Solution.

1. It's enough show to that Baire space is homeomorphic to a subspace of Cantor space, as a Polish subspace of a Polish space is G_{δ}. Define the map $\varphi: \omega^{\omega} \rightarrow 2^{\omega}$ by $\varphi(x)=0^{x_{0}} 10^{x_{1}} 10^{x_{2}} 1 \ldots$, where $0^{x_{i}}$ is 0 repeated x_{i}-many times. Observe that φ injects ω^{ω} onto the set of all binary sequences with 1 appearing infinitely often. Now, φ is a homeomorphism as for any $x \in \omega^{\omega}$, the first n digits of $\varphi(x)$ are determined by (at most) the first n digits of x. Similarly, φ^{-1} is continuous as the first n digits of x are determined by the first $\sum_{i<n} x_{i}+n$ digits of $\varphi(x)$.

2 . Let \mathbb{D} denote the space ω^{ω} where we replace our first copy of ω with \mathbb{Z} endowed with the discrete topology, and each subsequent factor of ω doesn't contain $0 . \mathbb{D}$ is homeomorphic to ω^{ω}, so it's enough to show that the irrationals is homeomorphic to \mathbb{D}. Following the hint, given an irrational number x, we can write it uniquely as follows:

$$
\begin{equation*}
x=x_{0}+\frac{1}{x_{1}+\frac{1}{x_{2}+\frac{1}{x_{3}+\frac{1}{x_{4}+\ddots}}}} \tag{1}
\end{equation*}
$$

where x_{0} is an integer and $x_{i}<\omega$ for each $i>0$. This is apparently denoted $\left[x_{0} ; x_{1}, x_{2} \ldots\right]$. Further, each such continued fraction like the RHS of (1) is an irrational number. Define $\varphi: \mathbb{D} \rightarrow \mathbb{I}$ by $x \mapsto\left[x_{0} ; x_{1}, x_{2} \ldots\right]$. Then φ is a homeomorphism. Indeed, φ is continuous as given an irrational $\varphi(x)=\left[x_{0} ; x_{1}, x_{2} \ldots\right]$ and any ε-ball B around $\varphi(x)$, membership in B will depend on only the first n many digits of x (for some sufficiently large n). Going in the other direction, given $x \in \mathbb{D}$ and the first n digits of x, we can find an ε-ball around $\left[x_{0} ; x_{1}, x_{2} \ldots\right]$ such that any $y \in \mathbb{D}$ with $\varphi(y)$ inside this ball will agree with x on the first n digits.

Problem 6. Let $T \subseteq A^{<\mathbb{N}}$ be a tree and suppose it is finitely branching. Prove that $[T]$ is compact.

Solution. Using the notation from Anush's notes, let $T(\sigma)=\left\{x \in A: \sigma^{\frown} x \in\right.$ $T\}$ for σ a finite sequence from A. Without loss of generality, assume that T is pruned and $[T]$ is nonempty. Now, let $\left(x_{n}\right)_{n<\omega}$ be a sequence of elements of $[T]$. It's enough to find a convergence subsequence. Construct such a subsequence $\left(x_{n_{i}}\right)_{i<\omega}$ and sequence $\left(a_{i}\right)_{i<\omega}$ by induction such that at each stage k, the set $\left(x_{n}\right)_{n<\omega} \cap N\left(x_{n_{k}} \upharpoonright k\right)$ is infinite, and that any two elements in this subsequence chosen after stage k will have $\left\langle a_{0}, \ldots, a_{k}\right\rangle$ as its first $k+1$ digits.
We do this in the following way: given $x_{n_{k}}, T\left(x_{n_{k}} \upharpoonright k\right)$ is finite as our tree T is finitely branching. By the induction hypothesis there's an $a_{k} \in A$ such that the basic open set $N\left(\left(x_{n_{k}} \upharpoonright k\right) \frown a_{k}\right)$ contains infinitely many elements from $\left(x_{n}\right)_{n<\omega}$. Choose $x_{n_{k+1}}$ to be such an element in $N\left(\left(x_{n_{k}} \upharpoonright k\right) \subset a_{k}\right)$. In particular, notice that $x_{n_{k+1}} \upharpoonright k=x_{n_{k}} \upharpoonright k$. This completes the inductive definition.

Finally, define $x \in[T]$ by $x(k)=a_{k}$. We claim that $\left(x_{n_{i}}\right) \rightarrow x$. Indeed, notice that for any length m, we have by construction that any sequence element $x_{n_{i}}$ chosen after stage m will extend $\left\langle a_{0}, \ldots, a_{m-1}\right\rangle$, and therefore agree with x on its first m digits. It follows that $\left(x_{n_{i}}\right) \rightarrow x$ as desired, and therefore that $[T]$ is compact.

Problem 7. Let S, T be trees on set A, B. Show that for any continuous function $f:[S] \rightarrow[T]$, there's a monotone map $\varphi: S \rightarrow T$ such that $f=\varphi^{*}$.

Solution. In what follows let N_{s} be shorthand for $N_{s} \cap[S]$ when s is a finite sequence from S (and similarly for N_{t}). Without loss of generality, assume that both $[S]$ and $[T]$ are nonempty. Following the hint, define $\varphi(s)$ to be the longest $t \in T$ such that $|t| \leq|s|$ and $N_{t} \supseteq f\left(N_{s}\right)$. The only hiccup may be if $N_{s}=\varnothing$; i.e., nothing in $[S]$ extends s. In this case we may set $\varphi(s)$ to be $\varphi\left(s^{\prime}\right)$, where $s^{\prime} \subseteq s$ is the largest such that $N_{s^{\prime}}$ isn't empty. Such a s^{\prime} always exists. We need to check that φ is well defined. To see this, observe that if $\left|t_{0}\right| \leq\left|t_{1}\right|$, they satisfy $f\left(N_{s}\right) \subseteq N_{t_{0}}$ and $f\left(N_{s}\right) \subseteq N_{t_{1}}$, and N_{s} is nonempty, then $t_{0} \subseteq t_{1}$.

To see what φ is doing, given $x \supseteq s$, we compute all the corresponding $f(x)$, and set $\varphi(s)$ as the largest initial segment (of length at most $|s|$) shared by all $f(x)$. With this in mind, it's not difficult to see that $\varphi(x)$ is monotone. Indeed, if $s \subseteq s^{\prime}$, then when we compute $f(x)$ for extensions x of s^{\prime}, they all must at least extend $\varphi(s)$, as each x extends s as well. Since $\varphi\left(s^{\prime}\right)$ is the longest such element of T of length at most $\left|s^{\prime}\right|$, it follows that $\varphi(s) \subseteq \varphi\left(s^{\prime}\right)$.

Finally, we check that $f=\varphi^{*}$. Recall, $\varphi^{*}(x)=\bigcup_{n<\omega} \varphi(x \mid n)$, where $\operatorname{dom}\left(\varphi^{*}\right)$ is all $x \in[S]$ such that $\lim _{n}|\varphi(x \mid n)|=\infty$. We first show that $[S]=\operatorname{dom}(\varphi)$. Given $x \in[S]$ and $k<\omega$, since f is continuous, we can find some $m \geq k$ such that $f\left(N_{x \mid m}\right) \subseteq N_{f(x) \mid k}$. We then have by definition that $k=|f(x) \upharpoonright k| \leq$ $|\varphi(x \mid m)|$. But, then $\lim _{n}|\varphi(x \mid n)|=\infty$, as φ is monotone and k was arbitrary.

The result follows after checking that $f(x)=\varphi^{*}(x)$. To see this, given k, we perform the argument in the above paragraph to find an $m \geq k$ such that $f\left(N_{x \mid m}\right) \subseteq N_{f(x) \mid k}$. Now, by definition, $f\left(N_{x \mid m}\right) \subseteq N_{\varphi(x \mid m)}$. Like above, we know that $|f(x) \upharpoonright k| \leq|\varphi(x \mid m)|$, and so the observation from the first paragraph to check that φ was well-defined implies that in fact $f(x) \mid k \subseteq$ $\varphi(x \mid m)$. As $f(x)$ and $\varphi^{*}(x)$ are both sequences, it finally follows that $f(x)=$ $\bigcup_{n} f(x) \mid n=\bigcup_{m} \varphi(x \mid m)=\varphi^{*}(x)$.

Problem 8. Let (X, d) be a metric space. Show the following are equivalent:

1. X is compact.
2. Every sequence in X has a convergent subsequence.
3. X is complete and totally bounded.

Solution. We proceed by following Anush's outline.
$(1) \Rightarrow(2)$: Given a sequence $\left(x_{n}\right)$, let K_{m} be the closure of $\left\{x_{n}\right\}_{m \geq n}$. The collection of all such K_{m} have the finite intersection property, as they're the closure of the tails of the given sequence. Since X is compact, $\bigcap_{m} K_{m}$ is nonempty. Fix $x \in \bigcap_{m} K_{m}$. We now construct a subsequence $\left(x_{n_{i}}\right)_{i}$ that converges to x : First, set $x_{n_{0}}=x_{0}$. Now, given $x_{n_{i}}$, we know by definition of closure that $B\left(x, 1 /\left(n_{i}+1\right)\right)$ intersects $K_{n_{i}+1}$. So, fix $m>n_{i}$ such that $x_{m} \in B\left(x, 1 /\left(n_{i}+1\right)\right)$. Set $x_{n_{i+1}}=x_{m}$. By construction, $n_{i}<n_{i+1}$ for all i, and $d\left(x, x_{n_{i+1}}\right)<\frac{1}{n_{i}+1} \rightarrow 0$ as $i \rightarrow 0$. It's straightforward to check that $\left(x_{n_{i}}\right)_{i} \rightarrow x$.
$(2) \Rightarrow(3):$ If X isn't complete, then there's a Cauchy sequence without a convergent subsequence. But this implies that the Cauchy sequence cannot converge. For total boundedness, assume instead that there's an $\varepsilon>0$ such that X cannot be covered by finitely many ball of radius ε. We construct a sequence $\left(x_{n}\right)_{n<\omega}$ without a convergent subsequence. Since X isn't totally bounded, it must be non empty, so fix $x_{0} \in X$. Given $\left(x_{i}\right)_{i<n}$, we have by hypothesis that $\bigcup_{i<n} B\left(x_{i}, \varepsilon\right) \neq X$. So, fix $x_{i+1} \notin \bigcup_{i<n} B\left(x_{i}, \varepsilon\right)$. By construction, we have that $d\left(x_{i}, x_{j}\right) \geq \varepsilon$ for all $i, j<\omega$, so certainly no subsequence of $\left(x_{n}\right)_{n<\omega}$ could converge.
$(3) \Rightarrow(2)$: Fix a sequence $\left(x_{n}\right)_{n<\omega}$. If $x_{i}=x_{j}$ occurs for infinitely many pairs i, j, then we're done. Otherwise, by thinning to a subsequence we may
assume that $\left(x_{n}\right)_{n<\omega}$ is injective. Next, given $a \in X$ and $\varepsilon>0$, let's write $S_{a, \varepsilon}=\left\{x_{i}: x_{i} \in B(a, \varepsilon)\right\}$. We construct a subsequence $\left(x_{n_{i}}\right)_{i<\omega}$ and sequence $\left(a_{i}\right)_{i<\omega}$ as follows:

For the base case, first observe there's a 2^{0}-net F. By the pigeonhole principle and since our sequence is injective, there's an $a_{0} \in F$ such that $S_{a_{0}, 1}$ is infinite. Choose $x_{n_{0}} \in S_{a_{0}, 1}$. Next, given $x_{n_{i}}$ and a_{i} for $i \leq k$, we know that there's a finite $2^{-(k+1)}$-net F. By the pigeonhole principle and induction, there's an $a_{k+1} \in F$ such that $\bigcap_{i \leq k} S_{a_{i}, 2^{-i}} \cap S_{a_{k+1}, 2^{-k-1}}$ is infinite. In particular, we may fix $n_{k+1}>n_{k}$ such that $x_{n_{k+1}} \in \bigcap_{i \leq k} S_{a_{i}, 2^{-i}} \cap S_{a_{k+1}, 2^{-k-1}}$.

By construction it follows that $\left(x_{n_{i}}\right)_{i<\omega}$ is Cauchy (and thus converges by the previous paragraph). To see this, for any $\varepsilon>0$, fix k such that $2^{-k-1}<\varepsilon$. Then, for all $i, j \geq k+1, x_{n_{i}}, x_{n_{j}} \in S_{a_{k+1} 2^{-k-1}}$ by construction. It then follows that

$$
d\left(x_{n_{i}}, x_{n_{j}}\right) \leq d\left(x_{n_{i}}, a_{k+1}\right)+d\left(x_{n_{j}}, a_{k+1}\right)<2^{-k-1}+2^{-k-1}=2^{-k}
$$

and we win.
(2) and $(3) \Rightarrow(1)$: Doing what Anush told me to do, I looked up Thm 0.25 in Folland. The main idea is that, given an open subcover $\left\{U_{\alpha}\right\}$, we find an $\varepsilon>0$ such that every ε-ball B is contained in a $U_{\alpha_{B}}$. For then we win because then we could cover X by a finite number of ε-balls B_{i}, implying $\left\{U_{\alpha_{B, i}}\right\}_{i}$ is a finite subcover.

