
Descriptive Set Theory HW 1

Thomas Dean

Problem 1. Let (X, τ) be a second-countable topological space.

1. Show that X has at most continuum many open subsets.

2. Prove that any strictly monotone sequence (Uα)α<γ of open subsets of
X has countable length.

3. Show that every monotone sequence (Uα)α<ω1 of opens sets eventually
stabilizes.

4. Conclude that the above holds for closed sets as well.

Solution.

1. Fix a countable basis (Bn)n<ω for X. Notice that the open subsets of X
are precisely unions of elements from this countable basis. With this in
mind, define f : τ → ℘(ω) by sending U ∈ τ to the set {n : Bn ⊆ U}.
Notice that f(U) is maximal such that U =

⋃
n∈f(U)Bn. It’s straightfor-

ward to check that U ⊆ V iff f(U) ⊆ f(V ), and so it follows that f is
injective, yielding the result. Because the map U 7→ X−U is a bijection
between the open and closed sets, the result also holds for closed sets.

2. Let f be the function defined before. It follows from above that U ( V
iff f(U) ( f(V ). The key fact is that there cannot be an uncountable
strictly increasing or decreasing sequence of subsets of ω, as ω is count-
able. To see this, if we had for example that (Aα)α<ω1 was a strictly
decreasing sequence of subsets of ω, we could choose for each α < ω1 an
element nα ∈ Aα − Aα+1, which defines an injection from ω1 into ω.

So, using the observation above, any uncountable strictly monotone se-
quence (Uα)α<γ of open sets would correspond either to the uncountable
strictly increasing or decreasing sequence (f(Uα))α<γ of subsets of ω, con-
tradicting the above remark. The result for closed subsets of X follows
by taking complements.
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3. Assume instead there was a monotone sequence (Uα)α<ω1 of opens sets
that never stabilized. Without loss of generality, assume that it were
increasing. Then for each α < ω1, there would be a β > α such that
Uα ( Uβ. Then, the set {α < ω1 : (∀β < α) Uβ ( Uα} is an unbounded
(and hence uncountable) subset of ω1. This induces an uncountable
strictly increasing sequence of open sets, contradicting (2). The result
for closed sets follows by taking complements.

4. Remarks were made above concerning this question.

?

Problem 2. Prove that any separable metric space has cardinality at most
continuum. Counterexample for general separable Hausdorff spaces?

Solution. Let (X, d) be such a metric space, and D ⊆ X witness separability.
Define a map f : X → RD by f(x)(a) = d(x, a). The point is that elements
of X are determined by their distances from elements in a dense subset. This
map is an injection, as if x 6= y, there’s an r > 0 such that d(x, y) ≥ r. By
density, there’s an a ∈ D such that d(x, a) < r

2
. Triangle inequality implies

that d(y, a) ≥ r
2
, yielding that f(x)(a) 6= f(y)(a). Since D is countable, RD

has cardinality continuum, and the result follows.
For the counterexample, it is known that the product of continuum many

separable Hausdorff spaces is separable, and so 2R is a separable Hausdorff
space. ?

Problem 3. Let (X, d) be a metric space.

1. Show thatX is complete iff every decreasing sequence of nonempty closed
sets (Bn)n<ω with diam(Bn)→ 0 has nonempty intersection (is a single-
ton).

2. Show that diam(Bn)→ 0 cannot be dropped.

Solution.

1. Let X be complete and (Bn)n<ω a decreasing sequence of closed sets
with diam(Bn) → 0. Then consider the sequence (xi) by choosing xi ∈
Bi. This sequence is Cauchy as given any ε > 0, there’s some N such
that k ≥ N implies diam(Bk) < ε. For any two n,m ≥ N , since the
sequence is decreasing, xn, xm ∈ Bk, implying that d(xn, xm) < ε. By
completeness, this sequence has a limit x. Then, x ∈

⋂
n<ω Bn as each
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is closed and the sequence (xi) is eventually in any Bn. To see that this
intersection is a singleton, observe that if y ∈

⋂
n<ω Bn, then, for any

ε > 0, d(x, y) < ε as diam(Bn)→ 0. This implies that x = y.

Going in the other direction, fix a Cauchy sequence (xn) in X. Use
Cauchy-ness to inductively construct an strictly increasing sequence (Nk)
such that, for k > 0, d(xn, xm) < 2−(k+1) when n,m ≥ Nk. Then let
Bk = B[xNk

, 2−k] be the closed ball of radius 2−k around xNk
. It’s clear

that diam(Bk)→ 0.

To show this sequence is decreasing, fix m ≥ k + 1. If y ∈ B[xNm , 2
−m],

then by construction, Nm > Nk, and so d(xNm , xNk
) < 2−(k+1). Since

2−m ≤ 2−(k+1), it follows

d(y, xNk
) ≤ d(y, xNm) + d(xNm , xNk

) < 2−(k+1) + 2−(k+1) = 2−k,

yielding y ∈ B[xNk
, 2−k]. By assumption, there’s a unique x ∈

⋂
n<ω Bn.

It’s easy to show (xn)→ x. It follows that X is complete by definition.

2. To see that diam(Bn)→ 0 cannot be dropped, consider the Polish space
ω with the discrete metric. Every set is closed, and so [n, ω)n<ω forms
a decreasing sequence of closed sets with empty intersection. With the
discrete metric, each such set has diameter 1.

?

Problem 4. Show Gδ sets are closed under finite unions. Equivalently, Fσ
sets are under finite intersections.

Solution. Let A =
⋂
i<ω Ui and B =

⋂
i<ω Vi be Gδ sets. The Fσ case follows

by taking complements. The key fact is that for sets X and {Yi}i∈I , we have
X ∪

⋂
i Yi =

⋂
i(Yi ∪X). In particular,

A ∪B =
⋂
n<ω

(Vn ∪ A) =
⋂
n<ω

(
⋂
m<ω

(Vn ∪ Um)) =
⋂

n,m∈ω

(Vn ∪ Um).

The final intersection is countable and Vn ∪Um is open for any n,m < ω, so
A ∪B is Gδ by definition. ?
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Problem 5. Show the following:

1. Baire space is homeomorphic to a Gδ subset of the Cantor space.

2. The irrationals is homeomorphic to the Baire space.

Solution.

1. It’s enough show to that Baire space is homeomorphic to a subspace of
Cantor space, as a Polish subspace of a Polish space is Gδ. Define the
map ϕ : ωω → 2ω by ϕ(x) = 0x010x110x21 . . ., where 0xi is 0 repeated
xi-many times. Observe that ϕ injects ωω onto the set of all binary
sequences with 1 appearing infinitely often. Now, ϕ is a homeomorphism
as for any x ∈ ωω, the first n digits of ϕ(x) are determined by (at most)
the first n digits of x. Similarly, ϕ−1 is continuous as the first n digits of
x are determined by the first

∑
i<n xi + n digits of ϕ(x).

2. Let D denote the space ωω where we replace our first copy of ω with
Z endowed with the discrete topology, and each subsequent factor of ω
doesn’t contain 0. D is homeomorphic to ωω, so it’s enough to show
that the irrationals is homeomorphic to D. Following the hint, given an
irrational number x, we can write it uniquely as follows:

x = x0 +
1

x1 +
1

x2 +
1

x3 +
1

x4 +
.. .

(1)

where x0 is an integer and xi < ω for each i > 0. This is apparently de-
noted [x0;x1, x2 . . .]. Further, each such continued fraction like the RHS
of (1) is an irrational number. Define ϕ : D → I by x 7→ [x0;x1, x2 . . .].
Then ϕ is a homeomorphism. Indeed, ϕ is continuous as given an irra-
tional ϕ(x) = [x0;x1, x2 . . .] and any ε-ball B around ϕ(x), membership
in B will depend on only the first n many digits of x (for some sufficiently
large n). Going in the other direction, given x ∈ D and the first n digits
of x, we can find an ε-ball around [x0;x1, x2 . . .] such that any y ∈ D
with ϕ(y) inside this ball will agree with x on the first n digits.

?
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Problem 6. Let T ⊆ A<N be a tree and suppose it is finitely branching. Prove
that [T ] is compact.

Solution. Using the notation from Anush’s notes, let T (σ) = {x ∈ A : σ_x ∈
T} for σ a finite sequence from A. Without loss of generality, assume that T is
pruned and [T ] is nonempty. Now, let (xn)n<ω be a sequence of elements of [T ].
It’s enough to find a convergence subsequence. Construct such a subsequence
(xni

)i<ω and sequence (ai)i<ω by induction such that at each stage k, the set
(xn)n<ω∩N(xnk

� k) is infinite, and that any two elements in this subsequence
chosen after stage k will have 〈a0, . . . , ak〉 as its first k + 1 digits.

We do this in the following way: given xnk
, T (xnk

� k) is finite as our tree
T is finitely branching. By the induction hypothesis there’s an ak ∈ A such
that the basic open set N((xnk

� k)_ak) contains infinitely many elements
from (xn)n<ω. Choose xnk+1

to be such an element in N((xnk
� k)_ak). In

particular, notice that xnk+1
� k = xnk

� k. This completes the inductive
definition.

Finally, define x ∈ [T ] by x(k) = ak. We claim that (xni
) → x. Indeed,

notice that for any length m, we have by construction that any sequence
element xni

chosen after stage m will extend 〈a0, . . . , am−1〉, and therefore
agree with x on its first m digits. It follows that (xni

) → x as desired, and
therefore that [T ] is compact. ?

Problem 7. Let S, T be trees on set A,B. Show that for any continuous
function f : [S]→ [T ], there’s a monotone map ϕ : S → T such that f = ϕ∗.

Solution. In what follows let Ns be shorthand for Ns ∩ [S] when s is a finite
sequence from S (and similarly for Nt). Without loss of generality, assume
that both [S] and [T ] are nonempty. Following the hint, define ϕ(s) to be the
longest t ∈ T such that |t| ≤ |s| and Nt ⊇ f(Ns). The only hiccup may be
if Ns = ∅; i.e., nothing in [S] extends s. In this case we may set ϕ(s) to be
ϕ(s′), where s′ ⊆ s is the largest such that Ns′ isn’t empty. Such a s′ always
exists. We need to check that ϕ is well defined. To see this, observe that if
|t0| ≤ |t1|, they satisfy f(Ns) ⊆ Nt0 and f(Ns) ⊆ Nt1 , and Ns is nonempty,
then t0 ⊆ t1.

To see what ϕ is doing, given x ⊇ s, we compute all the corresponding f(x),
and set ϕ(s) as the largest initial segment (of length at most |s|) shared by
all f(x). With this in mind, it’s not difficult to see that ϕ(x) is monotone.
Indeed, if s ⊆ s′, then when we compute f(x) for extensions x of s′, they
all must at least extend ϕ(s), as each x extends s as well. Since ϕ(s′) is the
longest such element of T of length at most |s′|, it follows that ϕ(s) ⊆ ϕ(s′).
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Finally, we check that f = ϕ∗. Recall, ϕ∗(x) =
⋃
n<ω ϕ(x|n), where dom(ϕ∗)

is all x ∈ [S] such that limn |ϕ(x|n)| = ∞. We first show that [S] = dom(ϕ).
Given x ∈ [S] and k < ω, since f is continuous, we can find some m ≥ k such
that f(Nx|m) ⊆ Nf(x)|k. We then have by definition that k = |f(x) � k| ≤
|ϕ(x|m)|. But, then limn |ϕ(x|n)| =∞, as ϕ is monotone and k was arbitrary.

The result follows after checking that f(x) = ϕ∗(x). To see this, given k,
we perform the argument in the above paragraph to find an m ≥ k such
that f(Nx|m) ⊆ Nf(x)|k. Now, by definition, f(Nx|m) ⊆ Nϕ(x|m). Like above,
we know that |f(x) � k| ≤ |ϕ(x|m)|, and so the observation from the first
paragraph to check that ϕ was well-defined implies that in fact f(x)|k ⊆
ϕ(x|m). As f(x) and ϕ∗(x) are both sequences, it finally follows that f(x) =⋃
n f(x)|n =

⋃
m ϕ(x|m) = ϕ∗(x). ?

Problem 8. Let (X, d) be a metric space. Show the following are equivalent:

1. X is compact.

2. Every sequence in X has a convergent subsequence.

3. X is complete and totally bounded.

Solution. We proceed by following Anush’s outline.
(1) ⇒ (2): Given a sequence (xn), let Km be the closure of {xn}m≥n. The

collection of all such Km have the finite intersection property, as they’re the
closure of the tails of the given sequence. Since X is compact,

⋂
mKm is

nonempty. Fix x ∈
⋂
mKm. We now construct a subsequence (xni

)i that
converges to x: First, set xn0 = x0. Now, given xni

, we know by definition
of closure that B(x, 1/(ni + 1)) intersects Kni+1. So, fix m > ni such that
xm ∈ B(x, 1/(ni + 1)). Set xni+1

= xm. By construction, ni < ni+1 for all
i, and d(x, xni+1

) < 1
ni+1

→ 0 as i → 0. It’s straightforward to check that
(xni

)i → x.
(2) ⇒ (3): If X isn’t complete, then there’s a Cauchy sequence without a

convergent subsequence. But this implies that the Cauchy sequence cannot
converge. For total boundedness, assume instead that there’s an ε > 0 such
that X cannot be covered by finitely many ball of radius ε. We construct
a sequence (xn)n<ω without a convergent subsequence. Since X isn’t totally
bounded, it must be non empty, so fix x0 ∈ X. Given (xi)i<n, we have by
hypothesis that

⋃
i<nB(xi, ε) 6= X. So, fix xi+1 /∈

⋃
i<nB(xi, ε). By construc-

tion, we have that d(xi, xj) ≥ ε for all i, j < ω, so certainly no subsequence of
(xn)n<ω could converge.

(3) ⇒ (2): Fix a sequence (xn)n<ω. If xi = xj occurs for infinitely many
pairs i, j, then we’re done. Otherwise, by thinning to a subsequence we may
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assume that (xn)n<ω is injective. Next, given a ∈ X and ε > 0, let’s write
Sa,ε = {xi : xi ∈ B(a, ε)}. We construct a subsequence (xni

)i<ω and sequence
(ai)i<ω as follows:

For the base case, first observe there’s a 20-net F . By the pigeonhole principle
and since our sequence is injective, there’s an a0 ∈ F such that Sa0,1 is infinite.
Choose xn0 ∈ Sa0,1. Next, given xni

and ai for i ≤ k, we know that there’s
a finite 2−(k+1)-net F . By the pigeonhole principle and induction, there’s an
ak+1 ∈ F such that

⋂
i≤k Sai,2−i ∩ Sak+1,2−k−1 is infinite. In particular, we may

fix nk+1 > nk such that xnk+1
∈
⋂
i≤k Sai,2−i ∩ Sak+1,2−k−1 .

By construction it follows that (xni
)i<ω is Cauchy (and thus converges by

the previous paragraph). To see this, for any ε > 0, fix k such that 2−k−1 < ε.
Then, for all i, j ≥ k+1, xni

, xnj
∈ Sak+1,2−k−1 by construction. It then follows

that

d(xni
, xnj

) ≤ d(xni
, ak+1) + d(xnj

, ak+1) < 2−k−1 + 2−k−1 = 2−k,

and we win.
(2) and (3)⇒ (1): Doing what Anush told me to do, I looked up Thm 0.25

in Folland. The main idea is that, given an open subcover {Uα}, we find an
ε > 0 such that every ε-ball B is contained in a UαB

. For then we win because
then we could cover X by a finite number of ε-balls Bi, implying {UαB,i

}i is a
finite subcover. ?
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